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Typically, in the manufacture of electrical filters it is not

practical to specify component tolerances in order to acthieve one-hundred

percent yield. Rather it is more cost-effective to have less stringent

tolerances on the component values and to tune those filters which do not

meet the design specifications by adjusting a subset of the component

values. For example, in the manufacture of hybrid thin or thick film

active filters, the capacitors are not normally trizmmed, so that only the

resistors in the circuit can be used to tune the filter. Furthermore,

resistor tri-uing increases the resistance so that a carefully designed

tuning scheme is required. In addition, tuning can be a very expensive

process, so that it is important to have a tuning algorithm which is

efficient and which maximizes the yield.

In this thesis a new algorithm is proposed for the tuning of analog

filters. Tellegen's theorem and the adjoint network concept are used to

relate large changes in a set of tuning elements to desired voltage changes

j in the manufactured filter. The component values in the manufactured

circuit are measured and the deviation of the voltages in the manufactured

circuit from the corresponding voltages in the nominal circuit design are

[ computed at a set of critical frequencies. A set of tuning resistors is

chosen and this information is entered into the large-change sensitivity

expression. The changes in the tuning elements needed to reduce these

voltages deviations to zero are computed by solving a set of linear

algebraic equations whose rank is equal to the number of tuning elements



plus one. It is shown that the method converges much faster to the

desired solution than first-order sensitivity and optimization methods.

Furthermore, the transfer function does not have to be computed in

symbolic form, nor do the coefficient sensitivities need to be computed.

In addition, the method has been found to be especially useful in the

tuning of multiple-feedback filter structures.
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1. INTRODUCTION

In the manufacture of high performance filters, it is often necessary

I to adjust some or all of the components of the filter in order to meet

certain specifications, which are normally given in terms of the variation

in gain with frequency. The process of adjusting component values to

correct for deviations from the specified gain response is known as

tuning.

I Deviations from the specified gain response are due to two basic

sources. The first of these is that the model assumed for the filter

does not account for parasitic effects, such as losses in the capacitors,

or the finite gain-bandwidth of the actual operational amplifier (op amp)

being used. The second is that the components themselves will be

I perturbed from their nominal values due to the initial production

I tolerances.

Tuning is an important problem in industry, and considerable effort

has been expended within industry and in research to develop algorithms

that can be automated, and which maximize the yield. Another basic reason

I for the importance of tuning is the trade-off between component costs and

tuning costs. Because the accuracy of the component values is inversely

related to cost, it is usually more cost-effective to employ an efficient

tuning algorithm, thereby significantly reducing manufacturing costs.

In general the problem of minimizing component and tuning costs is complex,

requiring the use of sophisticated computer aids for its solution [1,2,3].

Usually, practical considerations limit the tolerances that can be

specif'od for the filter components so that some amount of tuning is



needed. En addition, tuning can be a very expensive process, so that

it is important to have a tuning algorithm that is efficient.

At the time of this writing, active components, such as op amps,

are best fabricated by the silicon technology, while passive components

over a wide range of values and with high precision are best fabricated

by the thin and thick film technologies. A popular method of designing

active filters is to use a combination of the thin or thick film

technology and the silicon technology. In this hybrid approach, the

silicon integrated circuit op amp chips are bonded to thin or thick film

passive networks. While there are many trade-offs between the use of

thin and thick films, thick films usually require less expensive produc-

tion equipment, and for small quantities are less expensive to produce,

whereas thin films are economically justifiable only for high production

runs. In general thin films occupy less space than thick films and can

be manufactured to tighter initial tolerances. Presently, thin and thick

film resistors can be manufactured with initial production tolerances of

+5 percent, and + 20 percent, respectively, and can be adjusted with

triummed tolerances of + .1 percent, and + 1 percent, respectively, where

these figures represent conservative values C4]. The value of a resistor

R is determined by the sheet resistance R S, in ohms/square, and the

geometry, where 1 is the length and w is the width of-the resistor. Then

the value of the resistor R is given by

R- Rs)

In trimming, only the width w of the resistor is adjusted. This is done

by removing material from the width of the resistor by anodization,

etchants, or abrasives, or by a laser beam [43. Reducing the width of
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the resistor can only increase its value, so that the sheet resistance

R sis initially produced below its desired value so that the resistors

may be trixmmed up to their tuned values at the time of manufacture '51.

Thin film capacitors can be manufactured with an initial production

tolerance of + 5 percent at the time of this writing [61. While thick

film capacitors can be made, it is usually more economical to use

I discrete capacitors unless a large number is required [4]. The tolerances

of thin film capacitors are determined by the accuracy of the film

I properties, such as thickness and dielectric constant, and also by the

geometry. Thin film capacitors usually consists of a substrate, a layer

of metal (commonly called the base electrode), a dielectric layer, and a

top layer of metal (commonly called the counterelectrode). It is not

feasible to adjust capacitors [6] perhaps due to the additional expendi-

I ture of effort required to cut through three layers of material as opposed

to a single cut for resistor adjustment [7]. Also, automatic resistor

app-31 tus is available which makes resistor trimming adjustments in a

single operation thus making resistor adjustment more practical than

capacitor adjustment on an assembly line [7].

I A filter will be said to be tuned if it exhibits the same gain

characteristic as the nominal (to within a constant) at its output. Thus,

the purpose of the tuning resistors is solely to locate the poles and

zeros of the transfer function of the manufactured filter in their

nominal positions. Deviations in the dc level can usually be corrected

1 by some other resistors in the circuit without affecting the pole-zero

I locations.

A 4
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1.2 First-Order Sensitivity Methods

1.2.1 Transfer Function Sensitivity

First-order transfer function sensitivity methods use the

differential £8] to relate small changes in the tuning elements to desired

output voltage changes in the manufactured filter at a set of critical

frequencies. The partial derivatives of the output voltage of the manu-

factured filter circuit with respect to each of the tuning elements can

be efficiently and accurately obtained at each iteration via the adjoint

circuit concept [9,10]. The solution of a set of linear algebraic

equations gives the tuning element values at each iteration. The main

difference between this method and the new method to be described in

Section 1.2.8 is that the former method approximates the voltages in the

tuned filter by the manufactured filter voltages (AV set equal to zero in

equation (2.9)), whereas the latter method approximates the voltages in

the tuned filter by the nominal filter voltages, which experience has

shown, is a superior approximation. First-order transfer function

sensitivity methods are useful if sufficiently small changes in the tuning

elements will bring about the desired voltage changes in the manufactured

filter. otherwise, the method is slow to converge, or divergent.

1.2.2 Root Sensitivity Methods

First-order root sensitivity methods use the differential to relate

small changes in the tuning elements to desired pole-zero (and possibly

dc level) changes in the manufactured filter. The partial derivatives of

the poles and zeros (and possibly dc. level) of the manufactured filter

circuit with respect to each tuning element are approximated by computing

the changes in the pole-zero locations due to small variations in the
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tuning elements fill]. If the forward difference quotient fl12] is used

to approximate the derivatives and there are T tuning elements, then

T+1 computations must be made. The central difference quotient £12]

requires 2T computations.

In order to compute the desired pole-zero changes (and hence these

partial derivatives) the pole-zero locations of both the nominal and

manufactured filters must be found. To find the pole-zero locations of

the manufactured filter, magnitude (or phase) measurements are made at a

set of critical frequencies. This information is then used to compute

the transfer function coefficients of the manufactured filter by solving

a set of linear algebraic equations. Once these coefficients have been

j determined, a root solving subroutine is used to determine the pole-zero

locations of the manufactured filter, and then of the nominal filter,

whose transfer function coefficients are assumed to be known. Finally,

the forward difference quotient or the central difference quotient is used

to approximate the derivatives and this information is substituted into

the differential expression resulting in another set of linear algebraic

equations which is solved to give the changes in the tuning elements

required to tune the filter. of course, these steps would be iterated if

the first pass calculations did not adequately tune the filter.

The usefulness of the technique is limited in practice to the tuning

of simple, second or third-order filter stages, or such stages in cascade,

as a result of computational and measurement inaccuracies. In particular,

because the method requires calculation of the transfer function co-

[ efficients of the manufactured circuit (from which the roots of the manu-

factured circuit are computed) the roots are extremely sensitive to the

accuracy with which the transfer coefficients are computed.. The problem
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becomes acute when higher-order, narrow-band filter typeis are to be tuned

[11,13]. There is little that can be done to overcome this problem

except to use double precision in the computer calculations [131., or a

frequency transformation which generates a new polynomial whose roots

are further apart [13]. Also, some care should be taken in the selection

of a root finding subroutine [11].

In addition to the large amount of computational effort required to

find the approximate partial derivatives, the procedure is unsuccessful

in tuning a simple second-order bandpass example when the capacitance

values are 5 percent high and resistors are at their design values [11].

1.2.3 The W.and Q Sensitivity Methods

First-order w0and Q sensitivity methods use the differential to

relate small changes in the tuning elements to desired changes in the

parameters wo and Q. Because these parameters are defined only for

second-order systems, their use is limited to the tuning of simple second-

order filters, or such filter stages in cascade.

The partial derivatives of the parameters WOand Q of the manu-

factured circuit with respect to the tuning elements may be approximated

by using either the forward or central difference quotient. The desired

changes in the parameter values ore calculated and the resulting infor-

mation is substituted into the differential expression. The solution of

a set of linear algebraic equations gives the values of the tuning

elements required to tune the filter. Such parameter sensitivity methods

lend some theoretical insight into the tuning problem but are not used

in practice £14].

AIL
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1.2.4 functional Tuning

Functional tuning is a "seat of the pants" approach to filter tuning.

I At the time of manufacture the filter is powered up, or made functional,

while a sinusoidal excitation is applied and measurements are made at a

set of critical frequencies. The tuning elements are adjusted one at a

time until required gain or phase specifications at these critical

frequencies are met.

Functional tuning is straightforward enough in tuning second-order

filter sections where there are simple relationships between the desired

parameters and the circuit elements. However, because of interaction

I between the circuit elements it is often unclear which resistors to adjust

and their order of adjustment. It is also possible to overshoot the

tuned resistance values, since they are not known. Thus, an experienced

1 technician is usually required to handle the tuning and testing. The

method is a slow process; the obtainable accuracy is proportional to the

I number of iterations of the tuning steps £14].

It is not necessary to measure the component values or the parasitic

elements of the filter when it is functionally tuned. As an added benefit,

parasitics, are automatically taken into account and effectively tuned out

which makes it attractive to use in practice.

1 1.2.5 Deterministic Tuning (Coefficient Matching)

To be deterministically tuned, a thin or thick film filter is designed

so that any passive element or parasitic element may be measured by

( connection to two appropriate pins on the side of the substrate. Thus,

in the manufacturing process, the circuit elements are not all inter-

.1 connected on the substrate. After tuning, certain pins are bridged and

the filter is powered up and ready for service £6].
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The solution of a set of nonlinear equations gives the required

values of tuning resistance needed to tune the filter. To generate this

set of equations, the symbolic transfer function including parasitic

elements is found. The nonlinear equations are generated by matching the

transfer function coefficients of the nominal filter with those of the

manufactured filter. A set of tuning resistors is chosen and these

resistors are solved for in terms of the measured capacitors, parasitic

elements, remaining resistors, and the (known) nominal coefficients.

If the filter is to work properly when powered up, parasitic effects

must be taken into account. This usually means including all first-order

parasitic effects, and possibly second-order effects in the circuit model

of the filter [14]. The degree and complexity of the resulting transfer

function and the tuning resistor expressions increase markedly, making the

tuning resistor expressions difficult to derive, and necessitating the

use of powerful computer programs for their solution [6].

It is not known beforehand which set of resistors to choose for

tuning the filter, or whether or not a solution to the deterministic

tuning problem for the selected set of tuning resistors exists. There

may be more than one set of tuning resistors which yields a solution,

exactly one set which yields a unique solution, or there may not be a

set which yields a solution, depending on the circuit topology and the

component values. Even if a solution exists, there might be algebraic

or numerical problems in finding it [6].

The main advantage of deterministic tuning over functional tuning

is that tuning is accomplished by a non-interacting series of tuning

steps*



9

1.2.6 Hybrid Tuning

In practice it is often most efficient to use a combination of

functional and deterministic tuning. The filter is first determinisically

I tuned assuming ideal elements and then proceeded by a "functional touch-

I up" which is used to tune out undesirable parasitic effects C14].

1.2.7 Optimization

I The general iterative circuit optimization process C12] consists of

specifications, an initial approximation, and error evaluation. The

specifications might be the nominal gain at a set of critical frequencies,

f or example. The allowable deviations from these specified values is

also given. An initial circuit provided by the designer starts the

process up. This circuit is the initial approximation and might be the

gain of the first guess tuned circuit (measured at the same set of

critical frequencies as the nominal) of one of the before mentioned

methods. The initial approximation must be a good one or the optimization

process may fail to converge, or converge to an inferior final tuned

I circuit.

The error is defined as the difference between the nominal response,

and the tuned response, which changes, along with the tuning resistance,

from iteration to iteration. Usually a single number called the per-

formance index is used am a measure of the circuit performance at the ith

I iteration.[12].

To determine whether or not the ith circuit is acceptable, it is

compared to the nominal circuit and the (i-l)th circuit. If the deviation

of the ith circuit from the nominal circuit is within acceptable limits

the iteration stops. The iteration also stops if the tuning element

if values and/or the performance index does not change appreciably from one

IA
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iteration to the next. In addition, the program should limit the maximum

number of iterations by coming to a halt after a fixed number of iterations

to avoid excessive computational costs, regardless of the circuit per-

formance £12].

If the iteration continues, the tuning resistors are readjusted

according to some rule which results in a decrease in the error at the

next iteriation £12].

Any of the before mentioned tuning methods (with the exception of

functional tuning) may be improved upon using optimization. An example

of this which casts the deterministic tuning problem as an optimization

problem can be found in the literature [6]. To begin the process, the

transfer function coefficient deviation vector &z is found C6]. This is

given by

The first term on the right-hand side of the equation is the vector of

coefficients of the manufactured transfer function; the second term is the

vector of coefficients of the nominal transfer function. The transfer

function coefficients are nonlinear functions of the resistors and

capacitors in the circuit. In the manufactured circuit the jth resistor

and capacitor are perturbed from their nominal conductance G and

capacitance Cby amounts &G and &Crespectively. In addition, there

are parasitic elements &Gp which are not present in the nominal circuit.

Since it is not feasible to tune capacitors, the manufactured capacitors

a + X and the parasitic elements.A p are fixed, so that only the con-

ductances A may be tuned. The objective of deterministic tuning is to

solve for a subset of the conductances (leaving the remaining -



conductances fixed) that drives the difference vector _ to zero. By

I approximating Lz by the differential vector dz, and then expressing it

as a recursion relation and defining a performance index, the deter-

I ' ministic tuning problem is cast as an optimization problem [6,15].

The main advantage of optimization in this example is that problems

of existence and uniqueness of a solution that occur in conventional

I deterministic tuning are overcome. It should be noted that all of the

resistors are adjusted in this scheme.

IThere are several drawbacks to be considered here, however. Perhaps

I the most serious of these is the excessive computational cost of computing

the partial derivatives of each numerator and denominator coefficient of

the transfer function with respect to each passive and parasitic element

for each filter stage. These costs are intensified when all first-order

and some second-order parasitic effects are included in the circuit model

of the filter, especially those of bigher-order.

Multistage filters are tuned a stage at a time by this method. The

algorithm has not been applied to the tuning of a multiple feedback

structure [16,17], so that it is not known how successfully it tunes

I filters of this variety. As in deterministic tuning, the transfer

function in symbolic form including parasitic elements is needed for each

filter stage.

I Moreover, individual tuning rules must be derived and programmed for

each filter stage, which does not readily lend itself to tuning new

filter products, and results in additional programming costs.

1.2.8 A New Tunins Algorithm for Analos Filters

This thesis presents a new algorithm for tuning analog filters.

ITallegen's theorem [18) and the adjoint circuit concept [9) are used to
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develop a large-change sensitivity expression which relates large changes

in the tuning elements to desired voltage changes in the manufactured

filter at a set of critical frequencies. The partial derivatives are

computed efficiently and accurately via the adjoint method [9,10]. The

desired voltage changes are unknown, because the tuned circuit voltages

are not known. However, the nominal voltages are known and are used to

approximate the desired voltage changes. Experience has shown that this

approximation yields an excellent first guess for the component values

needed to tune the filter. The component values of the manufactured

circuit are measured, and a set of tuning resistors are chosen. The

voltages of the manufactured filter are either measured or simulated via

the computer, along with the voltages of the (simulated) nominal filter

at the critical frequencies, and this information is substituted into the

large-change sensitivity expression. The solution of a set of linear

algebraic equations of rank T+l (where T is the nizmber of tuning elements)

gives a first guess for the tuned values of the filter. The process is

iterated by simulating the first guess tuned circuit and substituting its

voltages and the new approximation for the desired voltage changes into

the large-change sensitivity expression. The resulting set of linear

algebraic equations is solved to give the new tuned values. This process

is continued until the specified error and stopping criteria are met. in

most cases, the method converges very quickly, as will be seen in the

forthcoming examples. In fact, one can obtain results that are almost

identical to the nominal response in only two or three iterations.
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12. DERIVATION AND IMPLEMENTATION OF THE ALGORITHM

2.1 Derivation of the Algorithm

In this section the tuning algorithm described in Section 1.2.8 will

be derived and steps for its implementation will be given. The foundation

I of the derivation is the differential Tellegen's theorem [18], which is

b A m
(2.1) k W kl - "Lv_) E (AV _j - &piVpj)

Ik-1 J p

The terms on the right-hand side of equation (2.1) represent independent

source branch voltages and currents including output port branch con-

straints, while the voltages and currents on the left-hand side of the

equation represent the remaining branch constraints. Equation (2.1) was

derived under the assumption that there are three topologically identical

networks, N, N, and N . The component values in the N network have been

perturbed from those in N such that the voltages and currents in the NA

I network are Vk + AVk, and Ik + &1k, respectively. Equation (2.1) relates

changes in voltages and currents in the N network to the voltages and

currents in the N network [19,20,21).

Since only resistors will be used as tuning elements, the conductance

branch constraints in the manufactured network N are

1 (2.2) 1k = G k k

and in the tuned network Na

1 (2.3) 1k + AIk - (Gk + AG k)(Vk + AVk)

I
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Subtracting (2.2) from (2.3) gives

(2.4) AIk - GkAVk + Gk(Vk + AVk)

If the branch constraints of N are chosen such that N is the adjoint

circuit of the network N [9], for example,

(2.5) 1 GkVk

then upon substitution of these adjoint network branch constraints and

the differential branch constraints of equation (2.4) into equation (2.1)

gives

T 2
(2.6) E (Vk + AVk)VkAGk Z V pjI pj- AI pjVpj)

k-i j=l

where T is the number of tuning elements and where a single input port

and a single output port is assumed on the right-hand side of

equation (2.6). Let port 1 denote the input port and port 2 denote the

output port, and assume that the input port has a voltage source

connected across its terminal pair. Since the purpose of tuning is to

correct for deviations in gain at the output port (to within a constant),

the quantities of interest are the output voltage V0 , or its change AV0.

On this basis, choose Vpl - OV and Ip2 1 A so that equation (2.6) becomes

T
(2.7) k N + AVk)Vkbak -AVp2

k-L

Requiring the output voltage of the tuned filter to be within a constant

of the nominal value over the frequency spectrum results in

(2.8)2 AV " CV' "Vo
(.)p 2 Od Om
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where V and VOd are the output voltages of the manufactured and nominal

jdesign circuits, respectively, the superscript j denotes the frequency

at which the deviation is computed, and c is an unknown constant. Let n

I represent the number of critical frequencies at which the measurements

are made. Then equation (2.7) becomes

7-i l- l " .1 -I
(V 1 + &V VlV ... (V + j TV) VT "VOd

(2.9) . ,
n .. .n

(V1 + AV )n (VT + AVT)-nT _V _V

L CJ A
The number of tuning elements and the number of frequencies must be chosen

I so that the rank of equation (2.9) is equal to the number of unknowns.

j Since the number of unknowns is T+I and equation (2.9) is complex, this

requires that 2n > T+l.

I The voltages Vk are the branch voltages in the manufactured circuit

and the &Vk are the voltage changes which occur when the circuit is tuned.

I Usually, the tern AVk is neglected in equation (2.9) and the resulting

expression is used to compute the first-order transfer function sensitivity

av 0  A
aGk N Vk VkI I

where the derivatives are evaluated about the manufactured circuit. How-

ever, below it is shown how to estimate the branch voltages AVk which is

I the key to the new algorithm. Clearly the &Vk terms cannot be determined

without a knowledge of the Ak terms. However, since the tuned circuit

will have essentially the same poles as the nominal circuit design, and

since the zeros of the transfer functions for the internal branches will

..

_r , .. .... - ---- ' : =-1 . ..
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typically lie outside of the passband of the filter, then the branch

voltages in the tuned circuit may be approximated as

(2.10) (Vk + &Vk) V kd

where the Vkd are the branch voltages in the nominal circuit design.

Thus, the tuning algorithm may be implemented as follows:

1) Select the number of tuning resistors such that T is less

than or equal to the number of poles and zeros of the

desired transfer function.

2) Select the number of frequencies n such that 2n - T+I, or

if T+1 is odd, 2n = t+2. Select frequencies in the neighborhood

of the band-edge of the filter, where the phase is changing

most rapidly.

3) Analyze the circuit with its component values equal to

their nominal design values at each of the critical frequencies

in step 2, and substitute these branch and output voltages

into equation (2.9) for (Vk + &Vk) and Vod-

4) Measure the component values in the manufactured circuit.

5) Compute or measure Vom at the critical frequencies in

step 2.

6) Solve the adjoint circuit with its component values equal to

those of the manufactured circuit at the critical frequencies

in step 2 in order to obtain Vk.

7. Solve equation (2.9) to obtain the &Gk terms, and the

constant c.

7_ _A 
... .. ..
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8. Compute the error using the error criteria of Section 2.2.

If the error is too large, proceed to step 9. Otherwise,

stop the iteration.

9. If the maximum number of iterations specified has not been

exceeded, generate a new manufactured circuit in the computer

by replacing G k by G k + X kP where the X.Gk terms are obtained

from step 7.

2.2 Error and Stopping Criteria

of primary importance in the realization of the algorithm is a

satisfactory means of halting the program when an acceptable tuned

response is obtained. While a visual display or a hard copy graph could

be made at each iteration, such an approach is time-consuming and un-

economical, although it does give an unmistakeably clear picture of

whether or not the circuit at each iteration meets specifications. In

lieu of this approach, the program examines up to three frequency bands

specified by the user and halts execution when the program error criteria

are met. In addition, the program limits the maximum number of iterations

by coming to a halt after a fixed number of iterations (specified by the

user) to avoid excessive computational costs, regardless of the tuned

circuit performance. The error and stopping criteria for the various

filter types will now be examined.

2.2.1 Criteria for a Lowpass Filter

In the design of a given filter type, the maximum gain deviation in

the pasaband and the minimum attenuation in the stopband are parameters

which are important to the circuit designer. Since these parameters are

indicative of the gain response, they are a useful measure of the tuned
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circuit performance at each iteration. For the following discussion,

refer to Figure 2.1. Let M I be the maximum gain in the passband (defined

between w P and w P2) and M2 the minimum gain in the passband. Then

define the maximum gain deviation in the passband D to be D = M, - M2 dB.

Let M 3 be the maximum gain in the stopband (defined between w S and ws2 ).

Then define A = M 2 - M3 dB to be the minimum attenuation in the stopband

as measured about the reference gain M 2.

The passband and stopband limits are specified by the user, along

with the number of frequency points to be included in each band. The

gain deviation that can be tolerated in the passband Da is specified as

well as the minimum attenuation acceptable in the stopband Amin* If

these quantities are not specified, the program defaults to their

(computed) nominal values. At each iteration the passband gain deviation

D and the minimum attenuation A are calculated and compared to D andmax

Amin, respectively. If these specifications are met, or if the change in

tuning resistance from the previous iteration is less than one percent

then the iteration is stopped.

It should be noced that for the special case of a Butterworth or

Chebyshev filter, the maximum gain in the stopband occurs at the band-

edge (at t in Figure 2.1). This is a result of the monotonic property

of Butterworth and Chebyshev polynomials in the stopband. Therefore in

order to find the maximum gain in the stopband it is only necessary to

compute the gain at the band-edge frequency for filters of this type.

2.2.2 Criteria for a Hishpass Filter

The error and stopping criteria for a highpass filter is defined in

the same manner as the lowpass filter criteria, and thus will not be

repeated.

r .. j...
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2.2.3 Criteria for a Bandpass Filter

The error and stopping criteria for a bandpass filter is similar to

the lowpass filter criteria except for an additional stopband. For the

following discussion, refer to Figure 2.2. Let M and M2 be the maximum

and minimum gain in the passband, respectively, M3 the maximum gain in

the first stopband (defined between w and w2) and M4 the maximum gain

in the second stopband (defined between w and w ). Then define the

maximum deviation in the passband D to be D = MI - M2 dB. Another

quantity of interest is the minimum attenuation in the first stopband,

or the minimum attenuation in the second stopband, whichever is smaller

(as measured about the reference gain M2). Define the minimum attenuation

A to be A - M2 - max(M3,M4 ) dB where max(M3,M4 ) denotes whichever is

greater, M3 or M 4 . The maximum gain deviation that can be tolerated in

the passbank Dmax and the minimum attenuation acceptable in the stopbands

Amin are specified by the user and compared with D and A at each iteration.

If these specifications are met, or if the change in tuning resistance

from the previous iteration is less than one percent, then the iteration

is stopped.

2.2.4 Criteria for a Band ReJect Filter

In arriving at a suitable error and stopping criteria for a band

reject filter, refer to Figure 2.3. Let M be the minimum gain in the

first passband (defined between w p and wp), M2 the minimum gain in the

second passband (defined between W and wP) and M the maximum gain in
P3  p4  3

the stopband (defined between and w ). The quantity of interest is

the minimum attenuation in the stopband as measured about the reference

gain M or M whichever is smaller. Then define the minimum attenuation~ 2 P
to be A - min(MM 2) - 3 dB where min(MHM 2) is the smaller of M,

_______ i]
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and M2. The designer only specifies the minimum attenuation acceptable

in the stopband A m, which is compared to A at each iteration. If the

specifications are met, or if the change in tuning resistance from the

previous iteration is less than one percent, then the iteration is

stopped.

2.2.5 Computer Program

A computer program written by the author which efficiently implements

the tuning algorithm of Section 2.1 is available from the author. The ac

steady state circuit analysis program (contained within and also written

by the author) is used to simulate the manufactured, adjoint and nominal

circuits. The circuit analysis program uses the modified nodal approach

[23] to formulate the circuit equations, and the popular Decompose and

Solve subroutines [24] to perform the Gaussian elimination. The adjoint

branch voltages and currents are efficiently found from the LU factor-

ization of the manufactured circuit [10].

I

I.

A,
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3. TESTING THE ALGORITHMi

In Section 1.2.8 a new algorithm was presented for the tu~ning of

analog filters, which was subsequently derived in Chapter 2. It remains

to test the algorithm on a number of filter samples which are representa-

tive of the manufacturing process. Before this can be done, the character-

istics of the manufacturing process must be understood. As hybrid thin

or thick film integrated circuits are a popular means of designing analog

filters, in what follows a brief overview of some of the characteristics

of the manufacturing process will be given.

3.1 Characteristics of the Thin Film Process

The initial production tolerance of a thin film resistor is + 5 per-

cent of its nominal value. This is primarily due to the sheet resistance

of a thin film circuit, which can be controlled to + 5 percent tolerances.

The tolerances of the length or width of a resistor depend on the masking

technique used, and can be made to within a range of + .1 mil to + .5 mil.

The inaccuracy of the longer dimension is usually negligible with the

length of the smaller one. Thus, if all the resistors on the substrate

have the same smaller dimension (whichever is smaller, length or width)

their values will all deviate from their nominal values by the same

percentage. Furthermore, it is primarily the smaller dimension which

determines the tolerance of the resistors [4].

All resistors can be routinely trimmed at the same time (by monitoring

a single resistor) to within + 1 percent if properly designed, and

individually trimmed to an accuracy of + .1 percent although at increased

manufacturing cost. in the manufacturing process, the sheet resistance -
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is initially produced below its desired value, the resistance values are

measured and then the resistors are trimmed up to their desired values C4).

Parasitic effects of thin film resistors are quite small. These

resistors usually perform better at high frequencies than their discrete

counterparts. However, at frequencies in the megahertz range they can be

modeled as shown in Figure 3.1. Typically the value of the shunt parasitic

capacitance C Pis on the order of a few tenths of a picofarad £43.

Figure 3.1 Model of a Thin Film Resistor Including

Parasitic Effects

Normally, there is good tracking between resistors, especially

those closest together on the substrate [4].

The initial production tolerance of a thin film capacitor is + 5 per-

cent of its nominal value [6). The only parasitic effect to be considered

in properly designed thin film capacitors is the series resistance R p

which results from the finite conductivity of the two electrodes. This

resistance usually varies from a few ohms in larger capacitors (on the

order of .01 gF) to a few hundred ohms in very small capacitors. The

shunt or leakage resistance R is normally greater than 10 7in which case
pp

jits effects are negligible. A model for the thin film capacitor which

includes parasitic effects is shown in Figure 3.2 £4).

goo"V py............
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Figure 3.2 Model of a Thin Film Capacitor Including
Parasitic Effects

Because conductors which interconnect the elements are usually very

short, parasitic capacitance and parasitic inductance effects between

conductors are usually less than their discrete circuit counterparts, and

can be neglected. However, the resistance of the conductors can range

from .1 to I ohm/square so that this effect must be included in the

circuit model in cases where the circuit performance is critical C41.

3.2 Characteristics of the Thick Film Process,

The initial production tolerance of a thick film resistor is + 20

percent of its nominal value, and with trimming, resistor tolerances can

be kept below 1 percent. As with thin films, it is the smaller dimension

that primarily determines the tolerance of the resistors [4].

After screening and firing, the thick film resistance values are

within + 2.5 percent of the nominal values. Thus, in the manufacturing

process, a good approach is to initially produce the sheet resistance 25

percent below the needed value, and then trim the resistors up to their

desired values £4].

Although thick film capacitors can be made it is more economical to

use discrete capacitors unless a large number is needed. it is more
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common to use thick films only for resistors and for conductors to inter-

connect the elements. Resistance of thick film conductors ranges from

.1 to .01 ohms/square but this range can be decreased by a factor of ten

less by solder coatings. In some instances it may be necessary to include

this resistance in the circuit model [4].

3.3 Op Amp Characteristics

Discrete op amp chips are usually bonded to the thin or thick film

circuits to form a hybrid thin or thick film filter. While an ideal op

amp model facilitates the design of an active filter, a more accurate

model might include parasitic elements which account for the finite input

and output resistance and finite gain-bandwidth product of real op amps.

3.4 Generating a Sample Circuit

Armed with a knowledge of the hybrid thin or thick film manufacturing

characteristics, it is now possible to generate some sample filters repre-

sentative of the manufacturing process. In succeeding chapters the

algorithm will be tested on a number of filter samples of various type,

order and topology, and the yield of the simulated manufacturing process

will be found.

Consider now the generation of a single sample circuit in which

parasitic effects are omitted for simplicity. In order to simulate

resistors in the sample filter circuit, it is assumed that in the manu-

facturing process the initial sheet resistivity is produced 25 percent

below its desired value for example, that all resistors have been measured,

and that tuning resistors have been individually trismmed 10 percent below

their nominal value and the other resistors trimmed to their nominal value.

Sih
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In light of the previous discussion the capacitors are modeled as

follows. The first capacitor is assumed to be triangularly distributed

in a five percent band about its nominal design value. Subsequent

capacitors are assumed to be triangularly distributed in a two percent

band about their nominal value plus the product of the nominal value and

the percentage deviation of the first capacitor, and are not to exceed

5 percent of their nominal value (in which case they are truncated at

+ 5 percent or - 5 percent, whichever is closer).

To generate a single sample circuit, a random number generator is

used to give uniformly distributed numbers in the interval [0,1]. There

are a number of subroutines with this capability in the literature

L25,26], and many computer systems include subroutines of this type in

their libraries. A single sample circuit is generated as follows:

1) Set all tuning resistors 10 percent below their nominal

value and all other resistors at their nominal value.

2) Assume a symmetric triangularly distributed probability

density function p(x) defined on some interval (xl,xh) with

center x0 M (x1 + xh)/2. Find an expression for the

probability distribution function P(x) in terms of x, Xl,

x0 and xh by integrating

x
P(x) - S p(g)dg x1I x 5x h

x A

and using the property of probability density functions that

p(C)dg i

P(x) is known to be a monotonically increasing function with

maximum value of 1.
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3) Find an expression for x in terms of xl, X0 , xh and P by

solving for the inverse of P(x). That is

x - X(xlxoxhP) - P (P(x)) .

4) Call the random number generator subroutine to give a real

number a., a E [0,1].

5) Since P(x) E [0,1], set P - a.

6) If the first capacitance value has been generated go to

step 7. Let C0 1 denote the nominal value of the first

capacitor. Set x1 = .95C0 1 , x0 = C0 1 , and xh - 1.05Co1.

Substitute thLae quantities and the value for a found in

step 4 into the expression in step 3 and solve for x.

Then x is the value of the first capacitor in the sample

circuit. Define k - (x - C01)/C to be the percentage

deviation of the first capacitor.

7) Let C j denote the nominal value of the jth capacitor.

To generate the jth capacitor in the sample circuit, repeat

steps 4 and 5. Then set x0 = (l+k)C0j, x1 a .98x0 , and

xh - 1.02x0 . Substitute these quantities as well as the

new value for CL found in step 4 into the expression in

step 3, and solve for x. Check to make certain that x

lies in the interval [.95C 0Jl.O5Co], and if not truncate

x at .95C0j or at 1.05C0 i, whichever is closer. Then x

is the value of the jth capacitor in the sample circuit.

8) Repeat step 7 until all of the capacitors in the sample

circuit have been generated.

1 ,
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la the actual manufacturing process, the actual trizmmed resistance

in step 1 may be measured and entered into the tuning algorithm, thus

reducing the tolerance requirements on the resistor trinmming equipment

C6]. Also, any important parasitic effects can easily be included in

the circuit model.
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l
4. STATISTICAL ANALYSIS OF A SECOND-ORDER FRIENDj HIGHPASS NOTCH FILTER

In order to test the tuning algorithm of Section 2.1, a second-order

Friend circuit [27] was designed to realize the highpass notch transfer

l function given by 26

T(s) = 2.0 2 s + 8X106
s + 500s + 16xl06

IThe three frequency bands of the filter are defined as follows. The

stopband ranges from 2814.97 to 2839.99 rad./sec., the first passband

ranges from dc to 1600.0 rad./sec., and the second passband ranges from

4000.0 to 6283.19 rad./sec. The component values for the nominal design

are given in Table 4.1 and the circuit diagram of the filter is shown in

IFigure 4.1. A minimum attenuation .f 30 dB in the stopband is attainable

1 with this design.

In order to simulate untuned filters of this type coming off the

I production line, five sample circuits were generated via the sequence of

steps in Section 3.4. The percentage deviation in the component values

I of these sample circuits from the nominal are recorded in Table 4.1, along

with the average value of the absolute percentage deviation in the

capacitance values which will be referred to later. While the thin or

1thick film manufacturing process is not justified for such a small

production volume as this, the number of sample circuits generated was

Irestricted because of the rather high cost of simulating a large production
volume.

[

il _
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Table 4.1 Component Values

. Deviation in the Component Values

Sample Circuit

Nominal
Component Value 1 2 3 4 5

RI 13.260 kCI 0.00 0.00 0.00 0.00 0.00

R2  93.0 kO 0.00 0.00 0.00 0.00 0.00

R3  214.0 kQ -10.00 -10.00 -10.00 -10.00 -10.00
R4  2.0 k 0.00 0.00 0.00 0.00 0.00

R5  2.0 kQ -10.00 -10.00 -10.00 -10.00 -10.00

R6  12.467 k -10.00 -10.00 -10.00 -10.00 -10.00

R7  0.00 kI -10.00 -10.00 -10.00 -10.00 -10.00

C1  .01 Pf -1.88 .58 -2.67 -3.24 .75

C2  .01 pf -1.35 .18 -3.42 -2.77 -.64

10000.0 0.00 0.00 0.00 0.00 0.00

Average value
of the Absolute
7 Dev. in the
Capacitance
Values 1.62 .38 3.05 3.01 .70

i- ?
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The transfer function of an untuned filter is of the form

s 2+ b s+b0
T(s) = K 2

s + a s + a0

where the transfer function coefficients K, bl b, a1 and a0can be

expressed in terms of the circuit components by using standard circuit

analysis techniques. The resulting expressions (not required by the

proposed large-change tuning algorithm) are complicated nonlinear functions

of the resistors and capacitors in the circuit. Since it is not feasible

to adjust capacitors, only resistors adjustments can be made to locate

the poles and zeros of the manufactured circuit in their nominal locations.

This can be done by driving the coefficients b I 0, b 0 - 8X10 6, a 500

6
and a0-16x10 . To this end four resistors, R3 ' R 5' R 6 and R 7are

selected to tune the filter, one for each coefficient. This requires that

equation (2.9) be evaluated at three frequencies. These frequencies are

chosen at 2828.4, 4000.0 and 4250.0 rad./sec. where the phase changes

most rapidly. The coefficient K only effects the dc gain and has no

effect on the pole-zero locations. However, deviations in the dc gain

may easily be corrected within the filter if the symbolic transfer function

is known. Otherwise it is a simple matter to append a single amplifier

stage with gain (2/K) (or (I/C) in equation (2.9)) to correct for dc gain

deviations.

Table 4.2 records the results of tuning the sample circuits. For

each of the sample circuits the first iteration demonstrated a marked

improvement in the minimum stopband attenuation, very nearly meeting the

nominal specifications. All of the circuits met specifications in two

iterations, at which time the algorithm converged to its final element
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Table 4.2 Statistical Analysis of Friend HPN Filter
Using Large-Change Transfer Function

Sensitivity

Min. Attenuation in

Sample Circuit Circuit Description Stopband (dB)

INominal 31.95

Manufactured 2.48I1 Iteration 1 31.53
Iteration 2 32.06

Manufactured .74
2Iteration 1 31.48

Iteration 2 31.96

IManufactured 3.69
3 Iteration 1 27.50

Iteration 2 32.41

Manufactured 3.72
4 Iteration 1 27.96

Iteration 2 32.41

Manufactured .98
5 Iteration 1 31.62

Iteration 2 31.95

AI
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values. (In this chapter and in subsequent chapters, the last iteration

recorded is the iteration where convergence occurs.) Finally, in each

case the tuning resistors increased in value from their manufactured

values.

The gain and phase response of the "worst case" sample circuit is

depicted in Figures 4.2 and 4.3 respectively. The nominal response in

this and in subsequent plots is always represented by a solid line, while

a broken line may either represent the manufactured response or the tuned

response depending on the context. By "worst case" circuit it is meant

that circuit whose gain and phase response is the most distorted from the

nominal. This is somewhat difficult to determine from just a knowledge

of the minimum stopband attenuation so that the following measure will be

used in this chapter and in the chapters to follow. Since the overall

response (both gain and phase response) generally deteriorates as the

circuit components are widely perturbed from the nominal (although some

cancellations are possible), and because all of the sample circuits have

the same resistance values, the percentage deviation in the capacitors

gives some measure of how severely distorted the overall response will be.

Therefore, the worst case circuit is found by averaging the absolute value

of the percentage deviation in the capacitor values for each of the sample

circuits and then designating the circuit with the highest average value

as the worst case circuit. These averages (which were mentioned earlier)

are recorded in Table 4.1, where the worst case circuit is seen to be

circuit 3.

In just one iteration, the filter is very nearly tuned as the gain1

and phase plots of Figures 4.4 and 4.5 indicate. Here the broken lines

represent the tuned response. (The tuned response plots in this chapter

_A_ Ii -
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and in the chapters to follow are shown with their corrected dc levels.)

In one additional iteration the gain and phase response of the tuned

circuit is virtually indistinguishable from the nominal gain and phase

as shown in Figures 4.6 and 4.7. The final tuning element values at the

iteration where convergence occurred are recorded in Table 4.3.

Finally, a first-order transfer function sensitivity method (&V

terms set equal to zero in equation (2.9)) was tested using these same

five sample circuits. The tuning results using this method are recorded

in Table 4.4. It is interesting to note that the first-order method

succeeded in tuning only those sample circuits whose average value of

the absolute percentage deviation in the capacitance values was

sufficiently small (sample circuits 2 and 5). Furthermore, a comparison

of Tables 4.2 and 4.4 indicates that when the first-order sensitivity

method worked it took twice as long to converge to the final element

values as the large-change sensitivity method.

Although the circuits which could not be tuned by this first-order

method exhibited a substantial improvement in the filter performance on

the first iteration, in successive iterations the tuned circuit per-

formance deteriorated substantially, eventually yielding one or more

negative tuning element values, without converging to a final set of

element values.

The first-order sensitivity method demonstrated 40 percent tuning

reliability, although the circuits which it succeeded in tuning had only

very minute changes in their capacitance values.* This is to be compared

( to the 100 percent tuning reliability attained with the large-change

sensitivity method which succeeded in tuning circuits with both small and

large changes in their capacitance values. One might anticipate that in

r. __________________________
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Table 4.4 Statistical Analysis of Friend HPN Filter
Using First-Order Transfer Function
Sensitivity

Min. Attenuation in

Sample Circuit Circuit Description Stopband (dB)

Nominal 31.95

Manufactured 2.48
Iteration 1 25.64
Iteration 2 29.57
Iteration 3 16.52*
Iteration 4 -18.74*
Iteration 5 - .18*

Manufactured .74
Iteration 1 29.70

2 Iteration 2 31.56
Iteration 3 31.95
Iteration 4 31.95

Manufactured 3.69
Iteration 1 22.79
Iteratioal 2 18.47
Iteration 3 20.22*
Iteration 4 13.16*
Iteration 5 8.36*

Manufactured 3.72
Iteration 1 22.92
Iteration 2 17.74Iteration 3 16.91*
Iteration 4 -11.16*
Iteration 5 -16.08*

Manufactured .98
Iteration 1 29.01

5 Iteration 2 31.40
Iteration 3 31.93
Iteration 4 31.95

Iteration yielded negative element values.

(
I

i1
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higher-order filters, the .4V terms in equation (2.9) become increasingly

more important, so that the large-change estimate of the ,V terms, given

by equation (2.10) of the same section, becomes almost a necessity.
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5. STATISTICAL ANALYSIS OF A FOURTH-ORDER BUTTERWORTH
FREQUENCY-DEPENDENT NEGATIVE RESISTANCE (FDNR)
FILTER

As another test of the proposed tuning algorithm a fourth-order

Butterworth FDNR [28] lowpass filter was designed from a doubly-terminated

passive prototype [29]. The admittances of the prototype filter are

scaled by the complex frequency variable s to give a topologically

equivalent network consisting of resistors, capacitors and frequency-

dependent negative resistors [28]. The network is scaled to a new cutoff

frequency of 6283.19 rad./sec. and the FDNR elements are realized by an

active circuit due tn Bruton [28] resulting in the circuit diagram of

Figure 5.1.

The two frequency bands of the filter are defined as follows. The

passband ranges from dc to 6283.19 rad./sec. and the stopband ranges from

12566.37 to 62831.85 rad./sec. The component values for the nominal

design are given in Table 5.1. A maximum passband deviation of 2.98 dB

and a minimum stopband attenuation of 21.04 dB is attainable with this

design.

Five sample circuits were generated via the sequence of steps in

Section 3.4 to simulate untuned filters of this type coming off the

production line. The percentage deviation in the component values from

the nominal, as well as the average value of the absolute percentage

deviation in the capacitance values for each sample circuit is also given

in Table 5.1.

The three resistors R , R7 and R8 are selected to tune this fourth-L8
order filter, which requires the evaluation of equation (2.9) at two

I frequencies. These frequencies are chosen at 6283.0 and 5805.0 r'i./sec.

|A
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Table 5.1 Component Values

% Deviation in the Component Values

Sample Circuit
Nominal

Component Value 1 2 3 4 5

R 1.0 kO 0.00 0.00 0.00 0.00 0.00

R2  1.0 ko 0.00 0.00 0.00 0.00 0.00

R3  1.0 ko 0.00 0.00 0.00 0.00 0.00
R4  1.0 k 0.00 0.00 0.00 0.00 0.00

R5  1.0 ko -10.00 -10.00 -10.00 -10.00 -10.00

R6  1.0 k4 0.00 0.00 0.00 0.00 0.00

R7  29.3 ko -10.00 -10.00 -10.00 -10.00 -10.00

R8  12.1 kO -10.00 -10.00 -10.00 -10.00 -10.00

C1  .01 f -1.88 -3.24 -.65 -4.01 -.72

C2  .01 f -1.35 -2.77 -.57 -4.93 -1.68

C3  .03493 4 -1.65 -2.95 .38 -3.63 -.31

C 4  .03493 4 -2.27 -4.57 -.83 -4.23 -1.16

C5  .05422 4i -2.93 -2.88 .08 -4.45 -.81

C6  .05422 pf -2.64 -3.46 -.78 -4.77 -1.00

Pi 10000.0 0.00 0.00 0.00 0.00 0.00

10000.0 0.00 0.00 0.00 0.00 0.00
10000.0 0.00 0.00 0.00 0.00 0.00

4 10000.0 0.00 0.00 0.00 0.00 0.00

Average
Value of the
Absolute %
Dev. in the
Capacitance
Values 2.12 3.31 .55 4.34 .95

I.

,I
"1 1_ __ _ _ __ _ _ _
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where the phase is changing most rapidly. Notice that the tuning

resistors chosen consist of all of the resistors in the FDNR transformed

lowpass prototype (corresponding to R7 and R ) and a single resistor in

either grounded FDNR (corresponding to R5).

The results of tuning the sample circuits are recorded in Table 5.2.

In each case the filters met the specifications in a single iteration,

at which time the iteration stopped. As an added plus, all of the tuning

resistance values increased from their manufactured values.

Table 5.1 indicates that sample circuit 4 exhibits the worst overall

response. The gain and phase response of this worst case circuit is shown

for both the nominal and manufactured circuits in Figures 5.2 and 5.3,

respectively. Figures 5.4 and 5.5 depict the respective gain and phase

response of the tuned circuit after a single iteration. Some explanation

of the phase plots is necessary. The actual phase of the nominal filter

varies from 0 to -360 degrees, attaining a value of -180 degrees at fc'

-270 degrees at 2fc, and -360 degrees at about lOf . However, because

the built-in arctangent function on the computer is only capable of

supplying angles between + 180 degrees, the plots of Figures 5.3 and 5.5

result. The nominal phase is correct for frequencies up to and including

the cutoff frequency. However, at a frequency lying just to the right of

fcat c' the actual phase is -(180 + e) degrees, where e > 0, which the

built-in arctangent function interprets as (180 - e) degrees, thus

resulting in the sudden discontinuity in the phase at f . Similarly, asC

the frequency approaches 2fc, the adtual phase approaches -270 degrees,

which the built-in arctangent function interprets as 90 degrees. As the

frequency approaches 10f (outside of the frequency limits of Figures 5.3

and 5.5) the actual phase approaches -360 degrees, which the built-in

MMM1,_
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arctangent function interprets as 0 degrees. Thus, Figures 5.3 and 5.5

do not give an accurate picture of the actual phase for frequencies in

the vicinity of f c(or for frequencies greater than fr).

Table 5.3 records the final tuning resistance values at the

iteration where convergence occurred for each of the sample circuits.

Finally, a first-order transfer function sensitivity method (IV

terms set equal to zero in equation (2.9)) was tested using the same

five sample circuits. Using this method, it was not possible to tune

any of the circuits. For each of the sample circuits, the first iteration

showed a deterioration in the circuit performance from the manufactured

circuit performance, and yielded one or~more negative elements. on sub-

sequent iterations, the element values became increasingly smaller,

eventually giving tuning resistance values on the order of 10- 0, or

less. These small resistor values sometimes resulted in a singular

matrix on the following iteration. In addition, the iterations never

converged to a final set of element values. It is interesting to note

that the first-order method failed even when the deviations in the

capacitance values of a given circuit were small. Thus, in higher-order

filters, the AV terms in equation (2.9) cannot evidently be neglected.

-7 -W77 A
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6. STATISTICAL ANALYSIS OF A SLXTH-ORDER CHEBYSHEV
LEAPFROG BANDPASS FILTER

The circuit diagram of a sixth-order Chebyshev leapfrog bandpass

filter which was used to test the proposed tuning algorithm is shown in

Figure 6.1. The filter is designed from a doubly-terminated lowpass

Chebyshev prototype with 1 dB passband ripple [291. The lowpass to band-

pass frequency transformatioft is used to give a bandpass filter with a

center frequency of 6283.19 rad./sec. and a bandwidth of 628.32 rad./sec.

Two negative feedback stages and a single state variable three amplifier

biquadratic stage is used to realize an active filter via the leapfrog

[16,17] concept. Multiple-feedback filters of this type are difficult

to tune in practice, because of the large amount of interaction between

the stages [30].

The frequency bands of the filter are defined as follows. The

first stopband of the filter ranges from dc to 5400.0 rad./sec., the

passband ranges from 5995.0 to 6603.0 rad./sec. and the second stopband

of the filter ranges from 7289.0 to 12566.37 rad./sec. The component

values for the nominal design are given in Table 6.1. A maximum passband

deviation of .73 dB and a minimum stopband attenuation of 32.27 dB is

attainable with this design.

Five sample circuits were generated via the sequence of steps in

Section 3.4 to simulate untuned filters of this type coming off the

production line. The percentage deviation in the component values of

these sample circuits from the nominal, as well as the average value of

the absolute percentage deviation in the capacitance values are also

given in Table 6.1. The five tuning resistors R2, R7, R9, R1 2 and R 1 3

U
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Table 6.1 Component Values

% Deviation in the Component Values

Sample Circuit
Nominal

Component Value 1 2 3 4 5

R 81.9 kO 0.00 0.00 0.00 0.00 0.00

R2  100.0 ko -10.00 -10.00 -10.00 -10.00 -10.00
R3  163.8 k 0.00 0.00 0.00 0.00 0.00

R4  81.9 kQ 0.00 0.00 0.00 0.00 0.00

R5  402.59 k 0.00 0.00 0.00 0.00 0.00

R6  402.59 kQ 0.00 0.00 0.00 0.00 0.00

R7  40.44 ko -10.00 -10.00 -10.00 -10.00 -10.00

R8  40.44 ko 0.00 0.00 0.00 0.00 0.00

R9  10.0 kQ -10.00 -10.00 -10.00 -10.00 -10.00

R40 10.0 kC2 0.00 0.00 0.00 0.00 0.00

R 1 81.9 kQ 0.00 0.00 0.00 0.00 0.00

R12 99.878 k, -10.00 -10.00 -10.00 -10.00 -10.00

R13 163.8 ko -10.00 -10.00 -10.00 -10.00 -10.00

C1  3930.0 pf -1.88 -3.24 -.65 -4.01 -.72

C2  3930.0 pf -1.35 -2.77 -.57 -4.93 -1.68

C3  .03932 pf -1.65 -2.95 .38 -3.63 -.31

C4  .03932 pf -2.27 -4.57 -.83 -4.23 -1.16

C5  .03932 pf -2.93 -2.88 .08 -4.45 -.81

C6  .03932 .f -2.64 -3.46 -.78 -4.77 -1.00

10000.0 0.00 0.00 0.00 0.00 0.00

P2 10000.0 0.00 0.00 0.00 0.00 0.00

IJ3  10000.0 0.00 0.00 0.00 0.00 0.00

44 10000.0 0.00 0.00 0.00 0.00 0.00

115 10000.0 0.00 0.00 0.00 0.00 0.00

Average Value
of the Absolute
% Dev. in the
Capacitance Values 2.12 3.31 .55 4.34 .95
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are selected to tune this sixth-order filter which requires the

evaluation of equation (2.9) at three frequencies. Two of these

frequencies are chosen close to the passband edge at 5975.88 and 6605.19

rad./sec. and the remaining frequency is chosen at the center frequency

of the filter, at 6283.19 rad./sec.

The results of tuning the sample circuits are recorded in Table 6.2.

Three of the five sample circuits converged to their final element values

in just two iterations, while all of the circuits converged to their

final element values in four iterations or less. In addition, in each

case, all of the tuning resistors increased in value from their manu-

factured values. Table 6.1 indicates that sample circuit 4 exhibits the

worst overall response. The gain response of the nominal and this worst

case manufactured filter is shown in Figure 6.2. Figure 6.3 is a

magnification of the gain curve in the passband. Because the gain of the

manufactured circuit is so grossly distorted from the nominal it exceeds

the grid limits of 1 dB and thus does not appear with the nominal curve

in Figure 6.3. The phase response of the nominal and manufactured circuit

is depicted in Figure 6.4.

After a single iteration the filter response markedly improves as

Figures 6.5-6.7 indicate. In fact, the gain response improves so much

that both the tuned and nominal gain curves appear in the magnified pass-

band depicted in Figure 6.6. An additional iteration improves the response

still further (Figures 6.8-6.10) until at the third iteration the tuned

and nominal response curves are nearly identical, even when magnified

(Figures 6.11-6.13)! In examining the magnified passband curves (Figure

6.12) it should be kept in mind that the entire vertical axis corresponds

to 1 dB so that the gain deviation between the nominal and tuned circuit
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at the third iteration is very minute. The algorithm finally converges

5 at the fourth iteration resulting in a slight improvement in the passband

(Figure 6.14).

The results of Table 6.2 must be interpreted with some care. Even

though the table indicates that the maximum deviation in the passband is

.82 dB at the third iteration, the magnified picture (Figure 6.12)

5 indicates that there is very little difference between the results of

the third and fourth iterations (Figure 6.14) although the fourth

iteration indicates a gain deviation of .75 dB, some .07 dB less. Indeed,

the element values change less than 1 percent from iteration 3 to

iteration 4 so that a very small change in the overall tuned response is

anticipated. The additional .07 dB gain deviation of iteration 3 occurs

at the upper passband edge (at about 1051 hertz) and is attributed to

minute deviations in the passband edge frequencies of the tuned filter

as well as the digitized nature of the gain deviation computation. As

another example of this consider the fact that the algorithm converged at

the fourth iteration, attaining a maximum deviation in the passband of

.75 dB, .02 dB greater than the nominal deviation of .73 dB. The

additional .02 dB deviation occurs at the lower pasaband edge (about

j 954 hertz in Figure 6.14). Similar situations may occur in the stopband

as well.

The final tuning resistance values at the iteration where convergence

occurred are recorded in Table 6.3 for each of the sample circuits.

A word of caution needs to be said in regard to the selection of

the tuning resistors. As a first choice one might logically select the

feedback resistors R 4' R 6 and R8as tuning elements. However, with this

choice of resistors, together with R 3 and R 13 ' the proposed large-change

__________________________________________________ ______________________________________________
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algorithm sometimes exhibited a thrashing behavior in which the first

iteration would nearly tune the filter, but subsequent iterations would

yield typically poorer results in both the passband and the stopband,

sometimes culminating in one or more negative tuning elements. This

strange behavior is perhaps an indication that no solution exists for

the related deterministic tuning problem for the particular set of tuning

resistors chosen. In the event that this behavior is encountered, another

choice of tuning resistors must be made.

The five sample circuits were also used to test a first-order

transfer function sensitivity method (obtained by setting the LV terms

equal to zero in equation (2.9)). With this first-order method, it was

not possible to tune any of the sample circuits. The first iteration

resulted in a deterioration of the circuit performance for each of the

five circuits, often yielding one or more negative tuning elements. Also,

in subsequent iterations, the right-hand side of equation (2.9) was

driven to zero (about 10-2 ), yielding one or more negative tuning

element values and/or extremely large tuning element values (about 10 33

probably indicative of a very ill-conditioned system of linear algebraic

equations. In addition, the iterations never converged to a final set of

element values. Ostensibly then, the &V terms in equation (2.9) are

important in a higher-order filter such as this, and cannot be neglected.
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7. STATISTICAL ANALYSIS OF A SIXTH-ORDER CHEBYSHEV
FDNR BANDPASS FILTER

The circuit diagram of a sixth-order Chebyshev FDNR bandpass filter

which was used to test the proposed large-change sensitivity tuning

algorithm is shown in Figure 7.1. The circuit is designed from a doubly-

terminated lowpass Chebyshev prototype with a .5 dB passband ripple C29].

The lowpass to bandpass transformation is used to give a bandpass filter

with a center frequency of 6283.19 rad./sec. and a bandwidth of 628.32

rad./sec. The admittances of the resulting filter are scaled by the

complex frequency variable s to give a topologically equivalent network

consisting of resistors, capacitors and frequency-dependent negative

resistors £28]. The grounded FDNR elements are realized by an active

circuit due to Bruton £281, and the single floating FDNR is realized by

two of these circuits connected back to back.

The three frequency bands of the filter are defined as follows. The

first stopband of the filter ranges from dc to 5400.0 rad./sec., the pass-

band ranges from 5995.0 to 6603.0 rad./sec. and the second stopband of

the filter ranges from 7289.0 to 12566.37 rad./sec. The component values

for the nominal design are given in Table 7.1. A maximum passband

deviation of .52 dB and a minimum stopband attenuation of 30.09 dB is

attainable with this design.

Five sample circuits were generated via the sequence of steps in

Section 3.4 to simulate untuned filters coming off of the production line.

The percentage deviation in the component values of these circuits from

the nominal as well as the average value of the absolute percentage

deviation in the capacitance values are also given in Table 7.1. The

K7
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Table 7.1 Component Values

7, Deviation in the Component Values

Sample Circuit
Nominal

Component Value 1 2 3 4 5

R1  997.02 c2 -10.00 -10.00 -10.00 -10.00 -10.00

R2  1.0 kCI 0.00 0.00 0.00 0.00 0.00

R3  1. 0 kCI 0.00 0.00 0.00 0.00 0.00

R4  174.550 kQ -10.00 -10.00 -10.00 -10.00 -10.00

R5  1.0 kC 0.00 0.00 0.00 0.00 0.00

R6  1.0 k -10.00 -10.00 -10.00 -10.00 -10.00

R7  1.0 kC 0.00 0.00 0.00 0.00 0.00

R18 1.0 kQ 0.00 0.00 0.00 0.00 0.00

R9  1.0 kQ 0.00 0.00 0.00 0.00 0.00

R10 1.0 kCI -10.00 -10.00 -10.00 -10.00 -10.00

R1 1  1.0 kC 0.00 0.00 0.00 0.00 0.00

R12 997.02 Q -10.00 -10.00 -10.00 -10.00 -10.00
R13 1.0 k 0.00 0.00 0.00 0.00 0.00

R 14 1.0 kC 0.00 0.00 0.00 0.00 0.00

C1  .01 .f -1.88 .94 .99 3.51 -3.62

C2  .01 PI -1.35 .71 .76 2.44 -4.65

C3  .01205 pf -1.65 .68 .53 3.37 -3.47

C4  .01205 pf -2.27 1.02 .19 2.96 -2.66

C5  .01205 ± -2.93 1.99 .70 2.01 -2.62

C 6  .01205 if -2.64 .75 .03 3.45 -3.81

C7  .1594 If -3.15 1.68 1.41 3.20 -3.27

C8  .1594 . -1.40 .81 .55 3.38 -4.04

C9  .1594 1 -1.59 -.68 .90 3.63 -4.08

C 10  .1594 Vf -3.23 -.03 .71 4.11 -3.93

100000.0 0.00 0.00 0.00 0.00 0.00

100000.0 0.00 0.OC 0.00 0.00 0.00

12 100000.0 0.00 0.00 0.00 0.00 0.00



Table 7.1 (continued)

% Deviation in the Comoonent Values

Sample Circuit

Nominal
Component Value 1 2 3 4 5

100000.0 0.00 0.00 0.00 0.00 0.00

- 100000.0 0.00 0.00 0.00 0.00 0.00

100000.0 0.00 0.00 0.00 0.00 0.00

100000.0 0.00 0.00 0.00 0.00 0.00

100000.0 0.00 0.00 0.00 0.00 0.00

Average Value
of the Absolute
% Dev. in the
Capacitance
Values 2.21 .93 .68 3.21 3.62

! .7
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five tuning resistors Rl.R4 'R1 and R 1 are selected to tune the

sixth-order filter which requires the evaluation of equation (2.9) at

three frequencies. The three frequencies are chosen at 5975.88, 6605.19

and 6283.19 rad./sec.

The results of tuning the sample circuits are recorded in Table 7.2.

Table 7.1 indicates that sample circuit 5 exhibits the worst overall

response. Three of the five circuits converged to their final element

values in just three iterations. Only two of the circuits (one of which

is the worst case circuit) required an additional iteration. In addition,

in each case all of the tuning elements increased in value from their

manufactured values. The gain response of the nominal and the worst case

manufactured circuits is shown in Figure 7.2. Figure 7.3 shows the

magnified curve in the passband. Because the gain of the manufactured

circuit is so grossly distorted from the nominal it exceeds the grid

limits of .6 dB and thus does not appear with the nominal curve in

Figure 7.3. The phase response of the nominal and the manufactured

circuits is shown in Figure 7.4. The response curves after one iteration

are shown in Figures 7.5-7.7. Note that in the magnified passband

(Figure 7.6) the filter response has vastly improved so that it now lies

* partially within the .6 dB grid limits. An additional iteration (Figures

7.8-7.10) improves the overall response still further so that the filter

is nearly tuned in two iterations! The magnified passband (Figure 7.9)

indicates that the tuned gain response does not fall exactly on top of

the nominal gain response in the passband, but in light of the scale

(.1 dli per division), this error is insignificant. Also note how the

tuned gain response at the upper pasaband edge (about 1051 hertz) lies

j just inside the nominal curve at this frequency resulting in an additional

Ih
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gain deviation error as discussed in Chapter 6. The magnified passband

at the final iteration is shown in Figure 7.11.

As with the sixth-order leapfrog filter of Chapter 6 some care must

be exercised in the selection of the tuning resistors. For example, when

R1 2 R V R 7, R12 and R 14are chosen as tuning resistors the thrashing

effects described in Chapter 6 result. However, when the tuning resistors

mentioned earlier are used to tune the filter, no thrashing effects are

evident. Notice that this set of tuning resistors consists of all of the

resistors in the FDNU transformed bandpass filter (corresponding toRi

Rand R 1 2 ) in Figure 7.1, a single resistor in the floating FDNR

(corresponding to R 6) and a single resistor in either grounded FDNR

(corresponding to R1)

Table 7.3 records the final tuning resistance values at the iteration

where convergence occurred for each of the sample circuits.

The same five sample circuits were used to test a first-order

transfer function sensitivity method (AV terms set equal to zero in

equation (2.9)). With this first-order sensitivity method it was not

possible to tune any of the sample circuits even though the first iteration

showed some improvement in the performance specifications of the filter,

although by no means rivaling the improvement attainable with the large-

change sensitivity method. In subsequent iterations the right-hand side

of equation (2.9) was driven to zero (about 10 -7) yielding one or more3

negative tuning element values and/or abnormally large (sometimes ab-

normally small) tuning element values, probably indicative of an ill-

conditioned system of linear algebraic equations. In addition, the

iterations never converged to a final set of element values.

7 7";11
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8. CONCLUSION

A large-charge transfer function sensitivity algorithm has been

proposed for the tuning of analog filters. Tellegen's theorem and the

adjoint network concept are used to relate large changes in a set of

tuning elements to desired voltage changes in the manufactured filter at

a set of critical frequencies [19,20,21]. Four filters of various type,

order and topology were designed and the manufacturing process of each was

simulated by generating a number of sample circuits. The sample circuits

were used to test the proposed tuning algorithm which in every case

yielded 100 percent tuning reliability. The proposed tuning algorithm

is superior to the existing tuning methods in several aspects. While all

of these methods require that the deviation in the element values at the

time of manufacture not be too great, the proposed large-change algorithm

can tolerate considerably larger element deviations and still tune the

filter. This is aptly demonstrated by comparison of the proposed algorithm

with the first-order transfer function sensitivity algorithm which yielded

zero percent tuning reliability in the test filters of Chapters 5-7 and

40 percent tuning reliability in the test filters of Chapter 3. in this

case only those sample circuits which had very small deviations in the

capacitance values were successfully tuned. In addition, it took the

first-order method twice as long to converge to the final element values

for these circuits than when the proposed tuning algorithm was used, thus

giving the latter an edge in speed of tuning and computational costs. As

another example, Shockley and Morris £11) reported that the first-order

root sensitivity method failed to tune a second-order, single amplifier

U bandpass filter in practice, when the capacitance values were five percent

Va
4'------
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above the nominal and the resistors were at their design values. Contrast

these results with the successful tuning of a sixth-order leapfrog band-

pass filter with the large-change algorithm, when the capacitance values

were, on the average, 4.34 percent below the nominal and the tuning

resistors were 10 percent below the nominal with all other resistors at

their design values. The results are even more staggering when one con-

siders that the leapfrog filter and other multiple-feedback filters are

difficult to tune in practice [3)]l as compared to the relative ease of

tuning the test filter used by Shockley and Morris Ell].

The proposed method is also superior to the previously cited methods

in that it overcomes problems of accuracy, especially inherent in the root

seusitivity method. Because the roots of the transfer function are cal-

culated from the (calculated) transfer function coefficients in this

method, there is a discrepancy between the accuracy of the coefficients

and the roots, which becomes especially critical in the case of higher-

order, narrow band filters C13]. The proposed tuning algorithm, on the

other hand, has no difficulty in tuning filters of this kind, as is

evident in the examples of Chapters 6 and 7. In addition the root

sensitivity method (and the woand Q sensitivity methods) approximate

derivatives by the forward difference quotient or the central difference

quotient which require judicious choice of the change in the parameter in

order to obtain a good approximation. in the large-change algorithm, how-

ever, the derivatives are computed accurately and efficiently via the

adjoint circuit concept.

The proposed algorithm is also much more computationally efficient

than the other algorithms, particularly than the deterministic method of

approximating transfer function deviations using optimization £6] where9

-_7i
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the derivatives of each numerator and denominator coefficient of the

transfer function with respect to each passive and parasitic element must

be computed for each filter stage. Unlike the root sensitivity method,

or deterministic tuning, the proposed tuning algorithm does not require

powerful computer programs for the solution of equations of high degree.

The proposed tuning algorithm is also superior to the other methods

in its flexibility. Because of problems with accuracy the root sensitivity

method is limited to the tuning of second or third-order sections £11].

which is cnot the case with the proposed tuning algorithm. Furthermore,

the symbolic transfer function (including parasitic elements) is not

required with the large-change tuning algorithm although it is required

with the root sensitivity method and deterministic methods [6,11,14].

Unlike deterministic methods, it is not necessary to derive expressions

for the tuning resistors in terms of the other components. Such expressions

are difficult to derive in practice and may not even exist £61. Also,

individual tuning rules are not deriv4 d for each new filter product with

the large-change algorithm, resulting in additional savings in programming

costs.

Because there are usually more resistors than there are transfer

function coefficients, it is not clear which resistors to select as tuning

resistors when using the proposed tuning algorithm or deterministic tuning.

The choice of a particular set of tuning resistors is important in both

cases, as a given set may or may not yield a solution as was emphasized in

Section 1.2.6. The poor selection of a set of tuning resistors sometimes

results in the thrashing effects described in Chapter 6. Ostensibly,

this is an Indication that no solution exists to the related deterministic

problem for the particular set of tuning resistors selected and the

9 E~-A
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manufactured component values. Fixing the problem is a simple matter Df

selecting another set of tuning resistors. However, it is desirable to

have some criteria 1Lor selecting a set of tuning resistors which alleviates

this behavior, and the number of tuning resistors so required, thus

warranting the need for further research.

Further research is also required in the area of more elaborate

modeling of the thin or thick film components and the op amps for the

filters of Chapters 4-7. New sample circuits which incorporate more

sophisticated models (such as discussed in Chapter 3) would be used to

test the proposed tuning algorithm. Since the new circuits containing

these models would be more representative of actual thin or thick film

hybrid filters coming off the production line, they would more accurately

depict the reliability of the tuning algorithm in practice.

Finally, in~some filter applications the variation in phase with

frequency is of more importance than the gain response. Such applications

typically occur in communications circuits where a linear phase or a

constant group delay is often specified. If this is the case, the stopping

and error criteria in Chapter 2 may be modified to stop the iteration when

the desired phase specifications are met.

Ti
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